
I

NASA Contractor Report 181785

ICASE REPORT NO. 89-7

ICASE
RUN-TIHE SCHEDULING AND EXECUTION OF

LOOPS ON MESSAGB PASSING MACBINES

\
cr)
c3

rq al
0 Kay Crowley
4

ul

U a
4 Joel Saltz

Ravi Mi rchandaney %# &a
W W - (0 1 Q Harry Berryman

Contract No. W1-18605
January 1989

INSTITUTE FOR COMPUTER APPLICATIONS I N SCIENCE AND ENGINEERING
NASA Langley Research Center, Hampton, Virginia 23665

Operated by t h e Universities Space Research Association

National Aeronautics and
Space Administration

Lsngley Research Carter
Hampton, Virginia 23665

c

Run-time Scheduling and Execution of Loops on
Message Passing Machines*

K a y Crowley Joel Saltz t Ravi Mirchandaney 1
Harry Berryman

Department of Computer Science
Yale University

New Haven, CT 06520

January 29, 1989

Abstract

Sparse system solvers and general purpose codes for solving partial differential
equations are examples of the many types of problems whose irregularity can result
in poor performance on distributed memory machines. Often, the data structures
used in these problems are very flexible. Crucial details concerning loop depen-
dences are encoded in these structures rather than being explicitly represented in
the program. Good methods for parallelizing and partitioning these types of prob-
lems require one to assign computations in rather arbitrary ways.

Naive implementations of programs on distributed memory machines requiring
general loop partitions can be extremely inefficient. Instead, the scheduling mecha-
nism needs to capture the data reference patterns of the loops in order to partition
the problem. Once this partition is obtained, a pre-processing step is required.
First, the indices assigned to each processor must be locally numbered. Next, it is
necessary to precompute what information is needed by each processor at various
points in the computation. The precomputed information is then used to generate
an execution template designed to carry out the computation, communication and
partitioning of data, in an optimized manner.

In this paper, we present the design of a general preprocessor and schedule
executer, the structures of which do not vary, even though the details of the com-
putation and of the type of information are problem dependent. We draw the
following conclusions from this work: it should be possible to solve a whole variety

'This work was supported by the U S . Office of Naval Research under Grant N00014-86-K-0310
t Additional support for these authors was provided under NASA contract NAS1-18605 while

were in residence at ICASE, NASA Langley Research Center, Hampton VA
they

1

of sparse and adaptive problems using a single mechanism for the setup phase of the
problem. These mechanisms can then be incorporated into automated compilers
for distributed memory machines as well as explicit language extensions. We also
present results that illustrate the performance benefits that accrue from effective
preprocessing.

1 Introduction

1.1 Overview

The focus of this paper is to explore methods of handling loop structures arising from
problems such as sparse system solvers whose irregularity can result in poor performance
on distributed memory machines. In these problems, crucial details concerning loop
dependences are encoded in data structures rather than being explicitly represented in
the program.

A distributed memory machine is a multiprocessor in which each processor has highly
preferential access to its own local memory. Accesses to storage in other processors is
substantially slower. Typically, there is no hardware support for accessing individual
storage locations in remote processors. Each processor directly reads or writes only
to its own memory locations. Remote memory fetches must be carried out in a rather
roundabout manner. Processor A obtains the contents of a given memory location which
is not on A by sending a message to processor B associated with the memory location.
Processor B must be programmed to anticipate such a request, to satisfy the request
and to return a responding message containing the information requested. In most
architectures the sending or receiving of a message is accompanied by a communication
startup time that is substantially higher than either the time of a computation or the
time required to send or receive an incremental word of data.

Distributed memory machines have very substantial advantages in their abilities
to deliver computational power at extremely high rates. When the work in scientific
programs is partitioned in an appropriate manner, excellent performance can often
be attained on machines or networks of multiprocessors with relatively rudimentary
communication capabilities.

Unfortunately, general purpose modern codes for solving partial differential equa-
tions and sparse linear systems are examples of the many types of problems whose
irregularity can result in poor performance on distributed memory machines.

One can use a shared memory model to execute a nest of loops on a distributed
memory machine [1],[3]. In all but very coarse grained problems, the results will be
very unsatisfactory unless mechanisms are used: 1) to anticipate what data will be
needed in which processor and 2) to cluster communications to reduce the number of

2

i

i

.

startups. This type of optimization is typically performed manually in problems with
regular communication patterns that do not vary when the program is executed with
different input parameters.

Attention must frequently be paid to how one is to partition work in a nest of loops
in order to achieve a good load balance along with reasonable communication costs.
When it is necessary to partition an array among processors in an irregular fashion, the
location of an array element in a local storage may not have a simple relationship with
any global numbering of the array elements. If these transformations between global
and local coordinates are resolved during the loop execution, a substantial performance
penalty will generally be paid.

The methods to be described here involve execution time preprocessing and in
essence require a prior symbolic execution of a loop structure. The usefulness of these
methods is clearly for inner loops of programs. Without them performance penalties
would have to be paid during every loop iteration rather than being paid for once during
an initial optimization.

In this paper, we present an outline of the infrastructure required to perform the
optimizations outlined above on a class of loops we term start-time schedulable. A
nest of loops is start-time schedulable if all data dependences are resolved before the
program begins execution and if these dependences do not change during the course of
the computation. This includes codes in which dependences are completely specified at
compile-time. We also present ideas on how the use of the infrastructure we describe
might be automated. Experimental data is included that quantifies the performance
obtainable using the methods to be discussed here.

One long term aim of this research is to produce software that is able to interface
with any program written on a distributed memory machine through what will appear
to the user to be a subroutine call. The subroutines in question will be formed from
standard templates we develop. These templates will be customized in a way that
optimizes inner loop performance for loop structures specified by the user. The current
research involves identification of techniques to achieve high performance for certain
important classes of loops. Follow on research would include the development of tools
that allow easy customization of the templates we provide.

1.2 Background

There are several research efforts under development which address the programmability
of distributed machines. DINO[8] is a C language extension which has been designed for
programming numerical algorithms on distributed machines. The constructs provided
by DIN0 allow the programmer to specify mappings of data structures onto a virtual
parallel machine. Accesses to local data are as usual but an access to a remote data ob-
ject results in automatic insertion of a message. Thus, for very regular problems whose

3

patterns of data accesses are known at compile-time, D I N 0 relieves the programmer
of specifying the send-receive pairs for the parallel program. Callahan and Kennedy[3]
describe another approach to programming distributed memory machines. User an-
notations to a high-level program declare whether a data-structure is logically shared
between the virtual processors and a one-one mapping between elements of the structure
and virtual processors is provided. Clustering of elements onto a single physical proces-
sor is specified separately. The authors suggest a long list of possible optimizations that
will be attempted; many of these are analogous to those carried out for shared-memory
and vectorizing compilers. Koelbel et. al. describe BLAZE[5] which is a language ex-
tension to Pascal. Here a user program may describe a distribution of shared arrays
among the machine’s processors. The main loop construct discussed in this paper is the
fora l l loop, distributed using strip-mining. The Linda system[l] provides an associative
addressing scheme by which a reference to variables can be resolved at run-time; this in
essence provides a shared name space for distributed memory machines.

In section 2 we describe in some detail the kinds of loop structures to which our
methods apply and we provide an overview of the optimizations we investigate. In
section 3 we outline the design of the methods we have explored. In section 4 we
present experimental results on the Intel iPSC/2 that quantify the benefits that can be
obtained through the use of our optimizations. We also present data that quantifies the
costs that would be incurred were one to take a naive approach towards dealing with
loops of the type we consider. Finally, in 5 we draw conclusions about the role of the
methods we have been investigating. We also draw conclusions about some of the issues
involved in mapping work from irregular or sparse problems onto distributed memory
machines.

2 Prescheduling Sparse Loop Structures

In section 2.1, we present a set of programs that carry out a simple regular computa-
tion. These examples demonstrate why even simple programs coded using loops that
involve flexible data structures can cause performance problems on distributed memory
machines. In section 2.2, we describe the added issues that arise when loops with
somewhat more complex dependency structures are considered. In section 2.3 we give
an overview of the way we carry out the optimizations presented here.

2.1 Sparse Matrix Vector Multiply

To provide a context for what follows, we will present two programs that carry out
a sequence of sparse matrix vector multiplies (Jacobi iterations) and what might be
done to execute these programs on a distributed memory machine. In Section 4 we
will present experimental results illustrating the differences in performance that arise

4

do iter=l,num
do i=l,n

do j=l,n
x(i,j) = a(i,j)*xold(i+l,j) + b(i,j)*xold(i-l,j) +

end do
c(i, j)*xold(i, j-1) + d(i, j)*xold(i,j+l)

end do

do i=l,n
do j=l,n

end do
xold(i,j) = x(i,j>

end do
end do

Figure 1: Jacobi Iteration

from the optimizations discussed here. The first version of the program is depicted in
Figure 1. Such a problem should be partitioned in a manner that 1) distributes load
between the processors roughly equally 2) limits the number of communication startups
and 3) limits the size of the messages that need to be communicated between processors.
Depending on the time required for communication startups, the typical strategy is to
partition all arrays by strips or rectangular blocks [7] . Values of variables along each
side of the periphery of the strips or blocks can be exchanged.

The program in Figure 1 performs a sequence of Jacobi sweeps or point relaxations
over an n by n square. In this program, the variable values at domain point z , j are
represented by x(i, j) and xold(i, j). The values of a(i, j) , b (i , j) , c(i, j) and
d (i , j) are used each iteration for the calculation of x (i , j) . Because of the regular ge-
ometry of this program, the programmer can easily identify variables whose values must
be sent to other processors, and values which must be received from other processors.
When this program executes, a single message can be formed from all variable values
corresponding to the side of a rectangle. If we partition the program in Figure 1 between
P processors using a vertical strip decomposition, Figure 2 gives the pseudocode for the
corresponding message passing program. We use a FORTRAN 8x type notation in our
pseudocode for depicting sending or receiving subarrays of floating point numbers.

In a distributed memory machine, array references must refer to memory locations
on a particular processor. In Figure 2, we see that it can be straightforward to translate
loops so that all references are to a processors local memory.

Consider Figure 3 which depicts a program that is somewhat more general than the

5

.o iter= 1, num

do i=l,n/P
do j=1 ,n
x(i,j) = a(i,j)*oldx(i+l,j) + b(i,j)*oldx(i-1,j) +

end do
c(i,j)*xold(i,j-l) + d(i,j)*xold(i,j+l)

end do

do i=l,n
do j=l ,n
xold(i,j) = x(i,j)
end do

end do

send xold(1;) to proc p-1
send xold(n/P;) to proc p+l
receive from proc p-1, put in xold
receive from proc p+l, put in xold(n/P+l;)

!nd do

Figure 2: Message Passing Jacobi

6

S1 do iter=l,num

s2 do i=i,n**2

s3 x(i) = x(i) + a(j)*xold(column(j))
do j =low (i) ,high(i)

end do
end do

s4 do i=l,n**2

end do
xold(i) = x(i)

end do

Figure 3: Sparse Mesh Jacobi

program in Figure 1 but for the appropriate array initializations represents the same
problem as the program in Figure 1. In the following figures we use a modification of
a standard sparse matrix data structure where the non zeros in matrix A are stored in
a one dimensional array a. Non zero elements are taken from consecutive rows of A
and are assigned to a beginning with the leftmost column of each row of A. For each
row i, low(i) and high(i) represent the locations in array a of the left and rightmost
non-zero columns of the row in matrix A. The column of A corresponding to element j of
a is given by column(j) . Rather than sweeping over a two dimensional array, we sweep
over a one dimensional array where dependences are given by the integer array column.
A problem with the same pattern of dependences as seen in Figure 1 could be specified
by the program in Figure 3. This form of the code is important because sparse matrix
solvers use this type of formulation.

In Figure 3 we use the arrays a and column to designate which array elements will
be needed to compute the right hand side in statement S3. Unless we know how arrays
low and high have been initialized, we do not know which elements of column and a
will be needed on each processor. In a naive implementation of the algorithm, we would
have to partition column and a in some regular manner and would have to fetch the
array values when they are needed, possibly generating high performance penalties. A
naive multiprocessor implementation of the code in Figure 3 also requires that a fetch
from a remote memory be performed whenever zold(column(j)) in program statement
S3 specifies a memory location not assigned to the processor on which the code executes.
The experimental results in Section 4 quantify how costly this kind of implementation
can be on a message passing machine.

We can systematically partition a problem to obtain a good balance between com-
munication costs and load balance. In Figure 4, we show an example of a partitioned

7

o iter=l,num I.
Sl
s2
s3

s4

s5

doall pe=l,num-processors
do i=l ,nlocal (pe)

next = schedule (i , pe)
do j=low(next) ,high(next)

end do
x(next) = x(next) + a(j)*xold(column(j))

end do
end doall

do i=l ,nlocal (pe)
next = schedule (i)
xold(next) = x(next)

end do
end doall

Figure 4: Transformed Sparse Mesh Jacobi

version of the program shown in Figure 3. Each iteration of the doall loop S 1 is as-
signed to a unique processor p e . Each processor pe loops over the indices assigned to it
(statement S2), the indices assigned to pe are specified in statement S3 by the subarray
scheduZe(;pe). In this illustration, global names are still given to all array references and
loop indices.

If we wished to store the required elements of arrays a and column in the processors
where these elements are used, some sort of scheme would be required to associate the
global index numbers with locations in local storage. To fetch values of xold in the right
hand side of statement S4, we would have to (1) determine the processor p responsible
for producing a variable value (2) determine the local identity of the variable on p and
(3) instruct processor p to send the variable value.

Optimizations that can be performed on this partitioned program are: (1) data to be
transmitted between processors can be formed into longer packets to amortize startup
costs, (2) communications to be carried out by each processor can be prescheduled so
that each processor knows when to send and when to receive values of specific variable,
and (3) the global index numbers used to access elements of x, old, a and column
can be translated into local index numbers that represent storage locations in each
processor.

8

,

I'

do iter=l,n
doall i=l,m

.. = x(*,iter-*)

I -
x(i,iter) = . .
end doall

end do

Figure 5: Sequence of Doall Loops

2.2 Prescheduling Loop Structures

We can perform optimizations of the type described in Section 2.1 in more general cases
where we have a sequence of doall loops between which there are dependency relations.
For instance in Figure 5 we have a sequential outer loop S1 whose loop body contains
a doall loop S2. S2 contains an expression with variables that may have been written
to during earlier iterations of SI.

Sets of recursion equations are a particularly important example of a type of problem
that are programmed as a sequence of doall loops. These equations are frequently
specified in a sparse format. Consider for example the program for solving a lower
triangular system in Figure 6. In that program, we must assume that the outer loop
S1 has to be executed in a sequential fashion. Sets of iterations of S 1 (Figure 6) that
can be concurrently executed can be identified by performing a topological sort on the
dependency graph relating the left hand side of S 1 to the right hand side. This sort is
performed by examining the integer array column. In this way the sequential construct
in Figure 6 can be transformed into a parallel construct consisting of a sequence of doall
loops. Each doall loop represents a concurrently executable set of indices from S1 of
figure 6.

It is frequently possible to cluster work carried out in solving recursion equations
so that adequate parallelism is preserved but so that a reduction is obtained in the
number of computational phases and hence the number of communication startups.
For example, consider what is required for efficiently solving a set of explicitly defined
recursion equations

on an X by Y point square (the recursion equations are subject to some suitable bound-

(1) y ; j . = a. t , jYi, j- l . + b i , j ~ i - l , j

9

do i=l,n**2
do j=low(i) ,high(i)

end do
x(i> = x(i> + a(j>*x(column(j>>

end do

Figure 6: Sparse Mesh Lower Triangular Solve

ary conditions). We can concurrently solve for variables along antidiagonals, i.e. vari-
ables y;,j satisfying i + j = L for positive k. The computation will be divided into
X + Y - 1 phases. Assume we instead partition the domain into a grid with X / m point
horizontal strips and X / n point vertical strips. The work in each of the resulting X / m
by X / n point rectangles is scheduled as a single unit. This modified computation will
require only X / m + X / n - 1 phases.

Work involved in solving recursion equations specified in a sparse format must be
scheduled so that parallelism can be exploited. In order to take advantage of efficiencies
that can be gained by clustering blocks of variables, operations assigned to a given
processor executed during a particular phase must be scheduled in a specific order.

Figure 7 demonstrates how the computations for 1 are carried out. Note that a
single triangular solve requires the solution of a sequence of doall loops (statements S 1
and S2); within each doall loop a set of row substitutions are scheduled (statement S3).
As mentioned above, carrying out the operations in the order given by the array schedule
in statement S3 may be essential. Methods for clustering work in sparse programs that
solve recursion equations are discussed in detail in [9].

2.3 Overview of Optimizations

First we must specify how the data structures appearing on the left hand side of expres-
sions will be partitioned. For problems having sparse representations, partitions can be
calculated using the integer data structures that represent dependency graphs (such as
the array column in the examples shown here) Alternately partitioning information of
variables appearing on the left hand side of expressions can be specified on an a-priori
basis by a user with a good understanding of the computational behavior exhibited by
an application. In our experiments described in Section 4 and in [6] we have used both
methods. A system is being designed that symbolically transforms annotated programs
to produce code that directly encodes dependency graphs. These graphs are encoded
as integer arrays that can be directly interpreted by a preprocessor. Descriptions of
problem partitioning methods can be found in [Z], [4], [7] .

10

S1 do phase=l,num,phases

s2
s3
s4

s5

b

doall pe=l,num-processors
do j= 1, npoints(phase,pe)

next = schedule(phase,pe,j)
do k=low(next) ,high(next)

end do
x(next) = x(next) + a(k)*x(column(k))

end do
end doall

I end do

Figure 7: Transformed Lower Triangular Solve

When a partition is calculated or input, a preprocessing step is performed. The
preprocessor precomputes the information needed to be sent to each processor at each
point in the computation and locally numbers the indices assigned to each processor.
This precomputed information is then used in a schedule execution template designed to
carry out (in an optimized manner) the computation, communications on the partitioned
data. In the examples displayed in this paper, the scheduled and partitioned indices
are represented in array schedule, (Figures 4 and 7). The structure of the schedule
executer and preprocessor do not vary, even though the details of the computation and
the type of information are problem dependent.

The reason we assume iterative codes is because there is a cost associated with this
preprocessing stage. For fine-grained computations, this cost will need to be amortized
over several iterations. The start-time requirement is related; were the elements needed
by an index of computation to change between iterations, the information computed by
the preprocessor will be invalid after that iteration.

3 System Design

3.1 Overview

A preprocessor was written to precompute the communication patterns needed in the
problems we solve. In addition, the preprocessor generates a request list for each pro-
cessor detailing what data it will need to complete its computation and where this data
can be found. The preprocessor also reorders the input data so it can easily be dis-
tributed to the processors. In the ezecuter, each processor simply uses its request list

11

and communication data to determine what communication and computation is needed
during a computational phase. The entire computation is solved over a fixed number of
steps. Each step or phase corresponds to one of the doall loops presented in Figure 5.

Consider what is involved in an implementation of an executer that doesn’t utilize
preprocessing to preschedule the transmission of needed data. Every time a processor
p discovers that it doesn’t have some data it needs it must go through the following
steps: (1) determine what processor p’ has that particular data; (2) send a “request to
receive” message to p’; and (3) receive the requested data from p‘. The executer could
be slightly smarter and have p package all requests for p’ during a computational phase
into a single message. In addition to having much higher computational overhead, this
implementation still necessitates twice as much computation as does the version of exe-
cuter using preprocessed data. In a message passing machine, where the communication
costs are extremely high, such an implementation is very inefficient (unless little or no
inter-processor communication is needed).

Due to the static nature of the dependency relations between different input data
elements in the problems we study (i.e. problems are s t a r t - t i m e schedulable) these
expensive “house-keeping” computations can be performed prior to the actual compu-
tation.

3.2 A Simple Schedule Executer

The executer performs computations in a streamlined manner. In this discussion, we
will use as our running example the program in Figure 7. Elements of arrays that never
appear on the left hand side of expressions are mapped to locations in local storage.
Array a is an example of a data structure that would be treated in this manner. Data
structure elements that appear on left hand sides of expressions can be organized in the
order in which they are first written. An integer array is used to specify the dependency
l ist ; this specifies the location in local storage of array elements of J: that will be
used on the right hand side of the expression. A distinction is made between elements
of J: stored on the local processor and elements that have to be obtained from other
processors. Elements of x that must be obtained from other processors are stored
in temporary buffers that are filled when data is obtained from other processors. In
Figure 8, we treat the arrays datalist, dependents, local as stacks, the function
pop returns the next element on the stack.

In Figure 8, we present a schematic version of an executer that corresponds to
Figure 7. The example conveys how we construct an executer; the actual executer is
programmed so that fewer array increments and references are required. Integer array
numelements in statement S1 gives the number of indices assigned to each computational
phase. In this version of the executer, we take advantage of the fact that elements of
array x are written to in a consecutive manner. Array numdependents in statement S2
gives the number of dependents corresponding to the current local index. In the context

12

9

t

I

of the lower triangular solve this is the number of non zeros appearing in a given row.
The element of x required may either have been computed by the current processor and
resides in its local solution vector or it has been computed by another processor and
was transmitted to the current processor at the end of the last phase. Logical array
l o c a l contains this information. If the index has been computed on the local processor,
the local index number is stored in integer array dependents (statement S3). If the
index has to be received from another processor, dependents reflects the location of the
array element in temporary storage (statement S4). d a t a l i s t stores the indices of the
elements of a. Elements of a are never found on the left hand side of any expression
in the executer so that it is possible to initially assign elements of a required in each
processor to locations in local memory.

Several factors/goals influenced the design of this module but the most important
were that (1) irregular problems be solved efficiently, and (2) executer be flexible so
that its functionality could easily be expanded.

The first of these goals was acheived by using a preprocessor to precompute com-
munication patterns, to perform local to global index transformations and to organize
local processor data. We accomplished the second goal by minimizing the amount of
function-specific code and presenting the input data in a form that is independent of
the function being computed. The computation required to execute the triangular solve
is found in statement S5. We present in brackets the statements required to modify
this executer so that it will compute a sequence of sparse matrix vector multiplies. In
this case, the number of elements in a phase in S1 does not vary with the phase. The
same memory locations are accessed during each computational phase so the l o c a l ,
dat a l i s t and dependents stacks are reinitialized each computational phase.

The CommunicateData() routine constructs packets of data and sends packets to
and receives packets from other processors. The preprocessor generated communication
data is used to determine how to construct these data packets and where packets are
sent and received.

3.3 A Preprocessor

The preprocessor requires an input schedule. The schedule designates the indices that
are to be executed by each processor during every phase of computation. Three main
tasks are performed by the preprocessor:

1. Determination of the communication pattern needed by each node;

2. Global to local address translation of the input data;

3. Reorganization of the data to allow efficient execution and generalization of the
executer.

13

call initialize(...)
do phase=O,NumPhases

[MVM:i-lhs = 1; initialize(datalist,local,dependents) 1

s1 do i=l ,numelements(phase)
i-lhs = i-lhs+l

s2 do j=O,numdependents(phase,i)

C evaluate request element, it may be local o r
C may have been computed by another processor
C
C

s3 reqvalue = x(pop(dependents))

s4

and sent here by CommunicateData()

if (pop (local) . eq . LOCAL) then

else

endif
reqvalue = recvPacket (pop (dependents)) (pop (dependent

I

end do
s5 x(i-lhs) = x(i,lhs) - reqvalue*a(pop(datalist))

[MVM : xnew (i -1hs) = x (i -1hs) + reqvalue*a (pop (dat a1 i st)) I

end do
[MVM: do i=l ,numelements(phase)

x(i) = xnew(i)
end do

end do
CommunicateData() ;

Figure 8: A Schedule Executer

14

These three tasks are now discussed briefly, further details and an outline of a parallel
version of the preprocessor are presented in the Appendix.

A sequence of send and receive communication calls are precomputed. The send
and receive communication calls must be paired; everytime a processor p l sends data
to another processor pi!, pi! must know to receive data from p l and processor p 2 must
also be aware of the format p l has imposed on the data it is sending.

To amortize message passing startup costs in distributed memory machines, we use
the schedule and the DAG to find out what information a processor p must receive
from each of the machine’s other processors during each computational phase. The
list describing the information p must send each phaseeach phase to each of the other
processors can be found directly from the list describing the information that must be
received. This list can also be found by using the transpose of the computational DAG.

Programs in a distributed memory machine must always refer to locations in local
memory. The programmer should be able to write loops referring to indices in a single
shared index set. Global to local mapping is done by having the preprocessor determine
the local address for each index element i. The local address of an element can be
determined by examining the schedule since the schedule defines the order of execution.
Once local addresses for all indices i are found, this information is used to: (1) rename
the indices the list of index i’s dependents (e.g. array dependents in Figure S) , and
(2) translate the schedule designating what is to be sent and received at any given
computational phase to refer to locations in local memory.

3.4 A more general example

The preprocessor and schedule executer can be customized to execute an arbitrary
number of functions where each of these functions may be executed different number
of times over subsets of the index space. Recall that thus far we have only considered
code blocks with a single computation; Figure 9 depicts a slightly more general code.
Functions F A and F-2 are executed over different parts of the index set. Further, there
is a conditional in the inner loop of the code.

Because the code is assumed to be start-time schedulable, the dependences associated
with each left hand side index can be determined once array1 and ar ray2 have been
initialized. Similarly, the conditional need not be evaluated for every iteration of the
above code; an execution schedule can be created by the preprocessor so that the inner
loop function F-2 is computed for only those values of indices that satisfy the conditional.
The schedule executor contains a list of indices which are used to evaluate functions F-1
and F-2 as many times as given by the values of the loop bounds and conditional values
which may be computed at start-time.

In Figure 10, we depict a template for a schedule used by the executer. This template

I

f

i

15

1
1

do i=l,N
do j=low(i) ,high(i)

Si: a(j) = F-l(arrayl(j))
do k=l ,n

if (arrayl(j> < array2(k))

end if
s2 : a(k) = a(j)*F_2(array(2))

end do
end do

end do

Figure 9: A more general computation

struct st-logical-sched
c
int num-phases;
int *functions ;
int *function-runs-this-phase;
int *indices ;

3

Figure 10: Representation of Schedules

16

specifies the number of phases for a given code block, the list of functions, the number
of times each function is computed and the list of indices in order of their function
applications. The schedule executer is customized based upon the number of such
functions within a given block of code. Thus, when there are two functions to be
evaluated in a code block, the executer contains the code for these functions. The lists
of left and right hand side indices are initialized and used as shown in Figure 8.

The preprocessor and the executer have been extended to solve the numerical phase
of sparse incomplete LU factorization. In this problem, we compute elements of the
factored matrix only at certain prespecified matrix locations. In the versions we have
implemented, the preprocessor precomputes the precise pattern of computation. Con-
ditionals that determine whether a matrix element is to be computed (based on the
known location of non-zeros) are only seen by the preprocessor.

The schedule executer is customized based upon the number of such functions within
a given block of code, as in Figure 9. Thus, when there are two functions to be evaluated
in a code block, the executer contains the code for these functions. The lists of left and
right hand side indices are initialized and used as shown in Figure 9, with the code
within the executer being driven by the contents of the structure shown in Figure 10.

The software we plan will ultimately be able to interface with any program written on
a distributed memory machine through what will appear to the user to be a subroutine
call. The subroutines in question will be formed from standard templates we develop.
These templates will be customized in a way that optimizes inner loop performance for
loop structures specified by the user. User annotations could be used to specify the
parts of a code that comprise the actual functions or computations. Thus, statements
S1 and S2 may be encapsulated within an annotation such as begin-node endnode.
For a more detailed description of this idea, the reader is referred to [6].

t

4 Analysis of Executor Performance

4.1 Overview of Executor Performance

In order to obtain an initial estimate of the efficiency of the executor on the Intel
iPSC/2, we carried out a sequence of sparse matrix vector multiplications using matrices
generated from a square mesh and a five point template. We expect this problem
to parallelize well; the experiments are carried out not to demonstrate this obvious
fact but to quantify the overhead caused by the extra non-floating point operations
performed by the executor. In particular, we need to distinguish between inefficiencies
due to the executor itself versus architecture and mapping related overheads such as
communication delays and load imbalance. We performed a number of inter-related
experiments to extract these factors.

17

Table 1: Matrix Vector Multiply 100 by 100 Mesh, 5pt. template

Processors

16
32

total
time

409
207
107
55
31
18

(4

computation
time

409
205
103
52
26
14

(ms>

executor
overhead

37
19
10
6
3
2

(ms>

Single processor timings from an optimized sequential program were compared with
the parallel code run on a single processor. The optimized sequential code required
Tsequential = 0.372 seconds while the parallel code on a single processor required 0.409
seconds. The overhead for using the executor in this case is approximately 9 percent.

We partitioned the loop indices evenly into blocks, assigning consecutive blocks of
indices to physically adjacent processors of an iPSC/2. 1 we depict the
total time required to solve the problem on varying numbers of processors. A separate
estimate of computation time Tcomp was obtained by eliminating the communication
calls. Because indices are partitioned evenly between processors in this very uniform
problem, we expect the load to be almost perfectly balanced. We form an estimate of
the overhead d u e t o extra operat ions per formed by t he executor

In Table

and depict this in Table 1. In may be seen that this overhead is roughly 10 percent
of the parallel execution time.

To demonstrate that the executor is capable of achieving high efficiencies in an
absolute sense, we reduce the relative contribution of communication costs by increasing
the size of the problem. We compared timings from matrix vector multiplications using
matrices generated from square meshes of sizes 100, 150 and 200 using a five point
template. The parallel efficiencies for 32 processors were 0.65 , 0.75 and 0.81 for problems
arising from 100, 150 and 200 point meshes respectively. As usual, we define parallel
efficiency as the ratio between the execution time for the optimized sequential program
divided by the product of the number of processors and the execution time of the
multiprocessor code.

18

Processors Linda executor
time time

time given
100 percent

16 12.679 0.031 I/ 32 1 11.724 1 0.018 1 0.012

8

4.2 Comparison of Executor Performance with that of a Shared
Memory Simulator

(seconds) (seconds) efficiency (seconds)
17.936 0.055 0.047

The Linda system[l] provides an associative addressing scheme by which a reference to
variables can be resolved at run-time, this in essence provides a shared name space for
distributed memory machines. We used the Linda system to estimate what efficiencies
one might expect if one were to fetch various required array values on a demand basis
with no preprocessing. We performed the same matrix vector multiplication experiments
described in section 4.1 using a matrix generated from a 100 by 100 mesh.

Referring to Figure 3, each element of array xold was fetched from the storage loca-
tion assigned to it by the Linda system when a need for that element was encountered.
All elements of a and column corresponding to a given row were stored contiguously
and fetched as a single unit. Table 2 depicts the timings obtained using the Linda
code along with a repetition of the timings obtained using the executor. The striking
difference in timings can be understood when one considers that using the iPSC/2 as a
shared memory machine requires having to pay several milliseconds per data fetch. It
is important to emphasize that optimizations similar to the ones discussed here could
be fruitfully employed in conjunction with the Linda system so that Linda’s apparent
shared memory would be used much more sparingly.

4.3 Distributed Memory Model Problem Analysis

In section 4.4, we will experimentally examine the performance of the executor in the
more challenging problem of solving sparse triangular systems. To properly interpret
the results we obtain, we need to first examine load balance communication cost trade-
offs in the context of solving the recursion equations in Section 2.2, equation 1. This
dependency pattern is seen in a lower triangular system generated by the zero fill fac-
torization of the matrix arising from a X by Y point rectangular mesh with a five point
template (this system might arise in preconditioned Krylov space iterative linear system
solvers). We will utilize P processors and partition the domain into n horizontal strips
where each strip is divided into m blocks.

19

I

With very general assumptions, we show below that it is optimal to make the vertical
strip size Y / n as large as possible and to decrease the horizontal block size X / m until
the increased communication time becomes larger than the benefit of decreased idle
time. We assume for convenience that m and n are multiples of P , and let S be the
time required to perform the sequential computation. We define Tc to be the time
taken to perform the computation in a block for a given m, n and S , and assume that
Tc = S/mn.

Estimated total time without communications can be expressed as the sum of the
time that would be required were the computation evenly distributed between processors
in the absence of any load imbalance plus the time wasted due to load imbalances:

Tcmn Tcmin(m, n) (P - 1)
P + P

where Tc = calculation time per block.

We now derive and discuss the second part of the above expression representing the
time wasted due to load imbalances. The number of phases is equal to m + n - 1.
Assuming that m and n are multiples of P , the term for idle time can be derived by
noting that during any phase j 5 min(m,n) - 1 when j is not a multiple of P , there
are P - j mod P processors idle When j is a multiple of P , no processors are idle. Thus
the sum of the processor idle time for j 5 min(m,n) - 1 is:

Tcmin(m, n) CE,(Z - 1) - Tcmin(m, n) (P - 1)
P * P 2P

-

Through similar reasoning, the sum of the processor idle time for the last min(m, n)-
During the intermediate phases, the load is balanced with 1 phases is the same.

min(m, n) blocks assigned to each processor. Thus the total idle time is:

Tcmin(m, n) (P - 1)
P

If there are no communication costs, TC = A, where S = sequential time. Then the
total estimated time equals

s , S (P - 1) - + ~ P max(m,n)P
Thus in the absence of communication costs, all terms involve m and n in a symmetric
manner.

First we show that in the presence of communication costs, we should choose rn 2 n.
We calculate the size of the largest message that must be sent between two processors
during each phase. We assume that the time required for communication is equal to the
sum of the times required each phase to send the largest messages. This tacitly assumes

20

that the system is essentially synchronous, that computation and communication occur
in alternating non overlapping periods of time.

The time required for communication can be safely assumed to be an increasing
function of message size. For phases 1 through min(m,n) - 1, the maximum number
of data values sent by any processor is [p/P1 * Bs, where p = phase number, Bs =
X/m, and X = horizontal dimension of the matrix. For phases min(m,n) through
m + n - min(m,n), the maximum number of data values sent by any processor is
rmin(rn,n)/Pl * Bs, and for phases m + n - min(m,n) + 1 through m + n - 1 a
maximum of [(m + n - p)/P1 * Bs data values. If Bs were held fixed, the time required
for communication would be symmetric in m and n. Since Bs is a decreasing function
of m, it is always advantageous from the standpoint of communica.tion cost to choose
m 2 n. Since equation 2 is also symmetric in m and n, the minimum total time always
occurs when m 2 n.

To minimize all terms involving n, we should chose n to be as small as possible, i.e.
P. For m 2 n, equation 2 has no dependence on n. For any given m, the communication
cost does not increase with decreasing n. If dependency graph GI has m by n1 points
and dependency graph Go has m by no points, with n1 5 no, GI can be embedded in
Go. Since the communication cost per block (Bs = X / m) is dependent only on m, GI
need have a communication requirement no greater than Go. We thus conclude that
the vertical blocks chosen should be as large as possible.

4.4 Executer Performance

We will show that we can account for the execution time in solving sparse triangular
systems by estimating the time lost due to both load imbalance and communication
delays. As mentioned earlier the input schedule dictates: (1) how the problem is parti-
tioned; and (2) the computational granularity. Computational granularity is a crucial
determinant of performance in message passing multiprocessors which possess relatively
high communication latencies. It is important to aggregate or clump work in a way that
leads to a controlled trade off between load imbalance and communication requirements.
Optimal partitioning (i.e. mapping of the unaggregated problem) cannot be acheived
without taking into account the geometrical relationship between index elements. Ag-
gregation methods used to generate input schedules arising from sparse forms of a wide
variety of recursion equations are described in [9]. An aggregation strategy that can be
used for the sparse versions of the recursion equations was discussed in Section 4.3. The
granularity of parallelism is parameterized using the parameters m and n introduced in
Section 4.3. Recall that as m and n increase, the size of the scheduled computational
grains decreases.

In Table 3 we depict the sequential time, parallel time, time required by the parallel
program run on one processor, estimated communication time, and estimated commu-
nication free time. on 32 nodes of an Intel iPSC/2. The communication time estimate

21

is obtained by running problems in which computation is deleted but communication
patterns are maintained. The estimated communication free time indicates the compu-
tation time that would be expected in the absence of communication delays, this is given
by equation 2; for this purpose we used the processor parallel time as the sequential
time. The problems solved were on a 192 by 192 point domain and on a 576 by 576
point domain. It was not possible to obtain sequential times or one processor parallel
times for the larger problem; the times shown were extrapolated from the 192 by 192
point problem.

We note that for the problems on a 192 point square, the estimated communication
free time added to the estimated communication time add up to a quantity that is close
to the total time measured. Because these three quantities are derived from distinct
experiments, this gives us some confidence that we are able to explain the timings
observed. There is more of a discrepancy for the problem on a 576 point square. Since
the one processor parallel time used is just an estimate, we expect that our estimate of
communication free time here will be less accurate.

We note that when we employ a very fine grained parallelism (m and n equal to
problem size) we pay a very heavy communication penalty relative to the computa-
tion time. The completion of this non-computationally intensive problem requires 383
phases, each one of which requires processors to both send and receive data. We can
reduce the number of computational phases, and consequently the communication time,
at the cost of increased load imbalances.

The overhead required for the operation of the executer appears to be captured well
by the differences between the sequential time and the time required for the parallel code
to execute on a single processor. Note that the overhead attributable to the executer,
roughly 33 percent, is substantially larger here than it was for matrix vector multiply.
This is understandable because the executor is having to coordinate a long sequence of

I distinct, rather fine grained computational phases.

While appropriate choice of computational granularity is essential for maximizing
computational efficiency, the nature of the triangular solve limits the performance that
can be obtained in problems that are not extremely large. The parallel efficiency ob-
tained in the 576 by 576 point mesh was 34 percent. This is roughly half of the speed
available once the overhead of the executor itself is accounted for.

It should be noted that the same types of experiments were performed on the iPSC/l
[6]. On the iPSC/l, floating point operations are much more expensive than they
are on our iPSC/2. Estimates performed on the iPSC/l indicated that the overhead
introduced by the executer was substantially smaller, and the parallel efficiencies were
correspondingly larger.

In Table 4 we present results from a somewhat less regular problem solved on a 32
node Intel iPSC/1 hypercube. Given appropriate clustering techniques, an extremely
high degree of regularity is not essential for achieving the efficiencies possible in these

22

Table 3: Matrix from square meshes, 5pt. template
-

Mesh n m total commun. commun. seq 1 proc
Size time time free time parallel

192 192 192 295 250 32 59 1 885
192 32 192 184 149 32 591 885
192 32 64 105 63 41 591 885
192 32 32 99 52 54 591 885
576 32 64 492 216 370 5319 7965

(ms) (ms) time(ms) (ms) time (ms)

efficiency total time

Table 4: Matrix from 300x300 mesh, 5pt. template reduced system

phases

0.16
0.31
0.53
0.44
0.33

3.99 598
2.07 299
1.21 149
1.44 99
1.95 75

communication :n
3.45
1.57
0.88
0.65
0.45

types of problems. The matrix for this problem is obtained in a rather involved manner
discussed more fully in [6]. We begin with a matrix obtained from a 300 by 300 point
mesh using a five point template. A reduced s y s t e m is obtained from this matrix by
modifying the matrix in a way that increases the number of non-zeros per row and
halves the number of rows.

In this problem the best efficiency was to 53%. The ability to aggregate work and
control the number of communication startups plays a central role in obtaining increased
efficiency.

5 Conclusion

There exist many types of problems (e.g. sparse system solvers) whose irregularity can
cause problems for distributed memory machines. Good methods for parallelizing and
partitioning these types of problems require one to assign computations and data in
rather arbitrary ways. Efficient implementations tend to involve considerable program-
ming effort to get good performance, making system development unnecessarily time
consuming.

We have described a system that efficiently solves a variety of irregular problems
that are s t a r t - t i m e schedulable. This system, which consists of a preprocessor and a

23

schedule executer, inputs a schedule which dictates/reflects how the input index data
is to be partitioned. The preprocessor precomputes the information needed to be sent
to each processor at each point in the computation and locally numbers the indices
assigned to each processor. This precomputed information is then used in a schedule
executer which is designed to carry out (in an optimized manner) the computation,
communication and the partitioning of data. The structure of the schedule executer
and preprocessor do not vary, even though the details of the computation and the type
of information are problem dependent.

We draw the following conclusions from this work:

1. It is possible to design a system that uses a single infrastructure to solve a variety
of sparse and adaptive problems.

2. It is likely that parallelizing compilers will have to customize well tuned template
programs rather than generate the very complex programs needed to efficiently
partition and parallelize rather simple loops.

3. The computational complexity of the preprocessor setup is relatively high. This
implies that preprocessors should be used only when a loop is to be executed many
times.

References

[l] S. Ahuja, N. Carriero, and D. Gelernter. Linda and friends. IEEE C o m p u t e r , August
1986.

[2] T. Allen and G. Cybenko. Recurs ive B i n a r y Par t i t i ons . Technical Report, Tufts
University Dept Computer Science, October 1987.

[3] D. Callahan and K. Kennedy. Compi l ing programs f o r d i s t r ibu ted -memory mu l t i -
processors. Technical Report TR88-74, Rice University, 1988.

[4] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker. Solving
Prob lems o n C o n c u r r e n t Computer s . Prentice-Hall, Englewood Cliffs, New Jersey,
1988.

[5] C. Koelbel, P. Mehrotra, and J. VanRosendale. S e m i - a u t o m a t i c p rob lem par t i t ion ing
f o r parallel computa t ions . Report 88-16, ICASE, 1988.

[6] R. Mirchandaney, J. H. Saltz, R. M. Smith, D. M. Nicol, and Kay Crowley. ,Prin-
cipals of runtime support for parallel processors. In Proceedings of t he 1988 A C M
In t e rna t iona l Conference o n Supercomput ing , St. M a l o France, July 1988.

24

t [7] D. M. Nicol and J. H. Saltz. Principles for Problem Aggregation and Assignment in
I Medium Scale Multiprocessors. Report 87-39, ICASE, September 1987.
i

[8] M. Rosing and R. Schnabel. An overview of D I N 0 - A new language for Numerical
Technical Report C U- C S- Comput at ion on Distributed Memory Multip rocess o rs.

385-88, University of Colorado, Boulder, 1988.
I

[9] J. Saltz. Aggregation methods for solving sparse triangular systems on multiproces-
sors. SIAM J. Sci. and Stat. Computation., to appear, 1989.

25

Report Documentation Page

1. Report No.
NASA CR-181785
ICASE Report N o . 89-7

2. Government Accession No.

4. Title and Subtitle
RUN-TIME SCHEDULING AND EXECUTION OF

17. Key Words (Suggested by Author(s))
p a r a l l e l p rocess ing , d i s t r i b u t e d
memory loops , sparse mat r ix
computa t i on

LOOPS ON MESSAGE PASSING MACHINES

18. Distribution Statement
61 - Computer Programming
and Software

Unc las s i f i ed - Unlimited

7. Author(s)
Kay Crowley, J o e l S a l t z
Ravi Mirchandaney, Har ry Berryman

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of pages

Unclas s i f i ed Unc las s i f i ed 26

9. Performing Organization Name and Address
I n s t i t u t e f o r Computer Appl ica t ions i n Science

Mail Stop 132C, NASA Langley Research Center
Hampton, VA 23665-5225

and Engineering

22. Price

A0 3

12. Sponsoring Agency Name and Address
National Aeronaut ics and Space Adminis t ra t ion
Langley Research Center
Hampton, VA 23665-5225

15. Supplementary Notes
Langley Technical Monitor:
Richard W. Barnwell

F i n a l Report

3. Recipient's Catalog No.

5. Re ort Date
fanuary 1989

6. Performing Organization Code

8. Performing Organization Report No.
89-7

10. Work Unit No.
505-90-21-01

11. Contract or Grant No.
NAS1-18107

13. Ty e of Report and Period Covered
t o n t r a c t o r Report

14. Sponsoring Agency Code

NASA FORM 1626 OCT 86 NASA-Langley, 1989

